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1.  Introduction

Piezoelectric composite diaphragms are widely used in 
MEMS, with reported applications in energy harvesters 
[1], accelerometers [2, 3], micropumps [4, 5] piezoelectric 
micromachined ultrasonic transducers (PMUTs) [6–9] and 

microphones [10–16]. Rectangular [4, 8, 10–12] or circular 
diaphragm [1–3, 6, 7, 9, 13–16] constructions are common, 
and depending on their application can have uniform or 
non-uniform layer compositions. In circular unimorph (one 
piezoelectric layer) and bimorph (two piezoelectric layers) 
geometries, the piezoelectric layers and/or electrodes often do 

Journal of Micromechanics and Microengineering

The electromechanical behavior of 
piezoelectric thin film composite 
diaphragms possessing in-plane stresses

B A Griffin1, M D Williams1, G Wang2, B V Sankar3, L N Cattafesta4  
and M Sheplak5

1  Sandia National Laboratories, Albuquerque, NM 87185, United States of America
2  MEMS Drive, Pasadena, CA 91107, United States of America
3  Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,  
FL 32611-6250, United States of America
4  Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310-6046,  
United States of America
5  Department of Mechanical and Aerospace Engineering, Interdisciplinary Microsystems Group,  
University of Florida, Gainesville, FL 32611-6250, United States of America

E-mail: sheplak@ufl.edu

Received 19 September 2016, revised 18 February 2017
Accepted for publication 24 February 2017
Published 14 March 2017

Abstract
Many piezoelectric microelectromechanical systems (MEMS) measure or generate acoustic 
signals via the motion of radially non-uniform, thin film composite plates. The composite 
layers provide piezoelectric actuation, structural support, electrode metallization, passivation, 
etc. Often, the layers are non-uniform over the plate and contain residual stresses introduced 
during the fabrication process. Accurate models of non-uniform composite plate mechanics 
are crucial for predicting and optimizing device performance. In this paper, an analytical 
solution for a radially non-uniform, piezoelectric, circular composite plate incorporating 
residual stress is derived. The analytical solution is compared to experimental measurements 
of a MEMS piezoelectric diaphragm. The results show the improved accuracy of the analytical 
model when including film stress, the speed of the analytical solution as compared to finite 
element analysis, the sensitivity of device performance to residual stress and the importance 
of accurate film stresses as model inputs. The analytical model presented is useful as a design 
optimization tool given the efficiency of the computational time, shown to be 275 times less 
than a comparable finite element analysis.
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not extend over the whole of the diaphragm. Two example uni-
morph geometries commonly utilized in microscale devices 
are illustrated in figure 1.

These diaphragms are formed from piezoelectric films 
together with a host of other materials in a composite layup. 
The supporting materials typically include metal or polysilicon 
electrodes, isolating silicon dioxide, and structural silicon or 
silicon nitride layers. In-plane residual stresses are nearly omni-
present byproducts of microfabrication processes and often 
dominate the behavior of these thin-film mechanical structures. 
Thermal expansion mismatch between films, substrate, and 
package lead to extrinsic thermal stress, while factors including 
lattice mismatch, impurities, volume change processes (e.g. 
phase transformation or outgassing), or atoms being trapped 
in high-energy configurations contribute to intrinsic stresses 
[17, 18]. Thus, a mechanical model of the piezoelectric com-
posite diaphragm that accounts for residual in-plane stresses is 
critical for successful design of thin-film piezoelectric MEMS. 
Although this can be accomplished using finite element anal-
ysis, it is computationally costly making it non-ideal as a design 
optimization tool. In this paper, an analytical plate model for a 
radially non-uniform multi-layered axisymmetric piezoelectric 
diaphragm subjected to in-plane stresses, transverse pressure, 
and applied voltage is developed that is also computationally 
efficient in comparison to finite element analysis. The model 
was used in design optimization of aluminum nitride based 
PMUTs [9] and microphones [15, 16].

The literature on piezoelectric composite plates, even nar-
rowed to unimorphs of circular geometry, is extensive. Analytical 
investigations of diaphragms with radially non-uniform layer 
composition as in figure 1 appear to have first been addressed 
by Antonyak and Vassergiser [19], who presented a static model 
of a simply-supported two-layer circular unimorph transducer in 
which the radius of the piezoelectric layer was less than that of the 
structural layer. The governing equations were solved piecewise 
on either side of the step discontinuity, with matching conditions 
on moments and displacements applied at the step discontinuity. 
An equivalent electroacoustic circuit was used to examine the 
variation of sensitivity and electromechanical coupling coeffi-
cient with changes in thickness and radius ratios. Evseichik et al 
[20] performed a similar study in 1991, but solved the time-har-
monic governing equations. The impacts of clamped, free, and 
hinged boundary conditions were discussed. Later, Chang and 
Du [21] formally determined optimized configurations for large 
electromechanical coupling factors and static deflections.

A static model of a clamped piezoelectric circular plate 
with radially non-uniform layers together with a two-port 
electroacoustic equivalent circuit representation was devel-
oped in a series of conference and journal papers from the 
Interdisciplinary Microsystems Group at the University of 
Florida [22–24] in the years 2002–2006. In Prasad et al [23, 
24], a compact, closed-form solution was offered for the 
problem of a clamped unimorph with a circular piezoelectric 
layer. Layer composition was generalized in the provided 
solution via use of the composite stiffness matrices, though 
the outer region was restricted to symmetric layups. The two-
port electroacoustic equivalent circuit developed had the same 
form utilized by Antonyak and Vassergiser [19]. The model 
was validated experimentally and with finite element analysis 
[23]. Another version of the model presented in Wang et al 
[22] included in-plane residual stress as an input.

Ayela et al [25] later utilized the model to design buckled 
micromembranes and extract the d31 piezoelectric coefficient 
from interferometer measurements. In 2003, Li and Chen [26] 
found the deflection profile of a simply-supported unimorph 
with inner-disc actuator and bond layer. Later, several papers 
from a group at the University of Pittsburgh addressed circular 
piezoelectric unimorphs. In 2005, Kim et  al [27] presented 
models for a circular unimorph with uniform piezoelectric and 
structural-layer thicknesses but two different electrode configu-
rations. In the first configuration, the electrodes fully covered the 
piezoelectric layer; in the second, the electrodes were segmented 
into inner and outer regions with reversed polarization. In 2006, 
Mo et al [28] investigated a two layer unimorph with clamped, 
simply-supported, and elastic edge conditions. Both radially 
uniform and non-uniform layer compositions were discussed. 
The authors focused on the variation of deflection profiles 
with a number of parameters, including thickness, radius, and 
elastic modulus ratios of the piezoelectric to structural layer. 
Experimental verification was also provided. The next year, the 
same authors modified the model with a segmented electrode 
configuration [27] to include elastically-restrained edge condi-
tions. Experimental verification of the model was provided [29].

Deshpande and Saggere [30] provided a generalized static 
model for prediction of the displacements of a circular piezo
electric plate with a single radial discontinuity. The ease of 
modeling arbitrary layer configurations via avoidance of early 
simplifications to the composite stiffness matrices was empha-
sized. Finite element and experimental verification were given 
for a range of voltage and pressure loadings. Papila et al [31] 

Figure 1.  Example piezoelectric composite unimorph diaphragm geometries utilized in microsystems (not to scale). (a) Radially non-
uniform circular unimorph. (b) Radially non-uniform annular unimorph.
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provided a similarly general formulation for a circular piezo
electric plate with two radial discontinuities.

This paper builds on the prior conference publication 
[22]. It presents a substantially generalized static model for 
prediction of the displacement profile of an axisymmetric 
piezoelectric composite diaphragm with a single radial discon-
tinuity and arbitrary layer composition, including prescription 
of layer residual stresses. The displacement response to both 
voltage and pressure loading is considered. Such a model may 
be used directly with the lumped element modeling technique 
[9, 15, 16, 23] to predict linear dynamic behavior. A compar-
ison of model predictions with experimental measurements of 
a MEMS microphone diaphragm [15, 16] is also given.

This paper is organized into four sections. In the following 
section, the solution strategy is discussed and the governing 
equations for the piezoelectric composite plate are derived and 
solved in a generalized manner. In section 3, the model is com-
pared with experimental results from a MEMS piezoelectric 
diaphragm. Section 4 concludes with final observations and 
suggestions for future work.

2.  Composite plate model

The basic piezoelectric composite plate geometries modeled 
herein are found in figure  1, where the layer compositions 
are regarded as arbitrary. Because the layup of thin films is 
not radially uniform, the governing equations  are solved in 
two domains, to be referred to as the inner circular region 
( r a0 1⩽ ⩽ ( )) and the outer annular region (a r a1 2⩽ ⩽( ) ( )). In 
this section, the governing differential equations for the piezo
electric composite plate will be derived; general analytical 
solutions for the transverse and radial displacements in each 
region will be obtained; and matching conditions at the inter-
face between the two regions and boundary conditions will be 
used to determine the constants of integration.

2.1.  Solution technique

A radially uniform piezoelectric composite plate with a 
biaxial state of residual stress is pictured in figure 2(a). A per-
fectly clamped plate such as this does not displace under the 
action of in-plane residual stress. However, a discontinuity in 
stress introduced via radial non-uniformity as in figure 2(b), 
induces a bending moment that causes displacement. In the 
case of an elastically restrained or simply-supported plate, 
a similar bending moment emerges at the plate boundary. 
Meanwhile, plate displacement resulting from the converse 
piezoelectric reaction to an applied voltage in a radially non-
uniform piezocomposite occurs in much the same way, with a 
voltage induced in-plane stress producing an effective bending 
moment. Thus, under voltage loading or external pressure 
loading, additional displacement results as in figure 2(c).

In the design of microfabricated piezoelectric devices, the 
incremental displacement of figure 2(c) due to external loads 
is of primary importance, for example as an input to a predic-
tive lumped element model [9, 13, 15, 16, 23]. In this work, 
incremental displacement is found from

= − =

−

σ

σ

≠ | ≠

≠ | =

w r w r w r w r

w r ,

P V

P V

inc tot ini 0, 0

0, 0

0

0

( ) ( ) ( ) ( )

( )
�

(1)

where the first term on the right hand side is the total displace-
ment due to both in-plane residual stress and external loading, 
and the second term is the initial displacement due solely to 
in-plane residual stress. The goal, then, is to derive a predictive 
model for the geometries of figure 1 with inputs representing 
in-plane residual stress, pressure, and applied voltage. Clearly, 
for a plate with zero in-plane stress, =w winc tot.

2.2.  Axisymmetric model derivation

A list of variables used through the following derivation is 
given in table  1 for convenience. Figure  3 should be refer-
enced for coordinate conventions.

2.2.1.  Strain-displacement relations.  Under the assumption 
of small, finite deformations, the kinematic assumptions of 
Kirchhoff plate theory allow the strain field in an axisymmet-
ric plate to be reduced to [32]

ε ε κ= + z ,0� (2)

Figure 2.  Comparison of initial displacements between uniform 
(a) and non-uniform composite plates (b) and definition of 
incremental deflection due to loading (c). (a) Perfectly clamped 
plate with radially uniform layers and in-plane stress has no initial 
deflection. (b) Etched structure exhibits initial deflection due to  
in-plane residual stress. (c) Incremental deflection due to pressure 
(or voltage) loading.
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where ε ε ε= θθrr
T{   }  collects the non-zero components of the 

reduced Green strain tensor. The so-called reference plane 
strains of the surface z  =  0 are

⎜ ⎟
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and the curvatures are given as
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With the inclusion of the nonlinear term containing w rd d 2( / )  
in (3), (2)–(4) collectively define the von Kármán strains [32].

2.2.2.  Equilibrium equations.  The equilibrium equations for 
the axisymmetric bending of a circular or annular plate are 
well-known [32, 33] to be

+
−

=θN
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� (5)
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+ =θM
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and
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w
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d

d
,r r( ) ( )� (7)

subject to essential or natural boundary conditions on u or Nr, 
w rd d/  or Mr, and w or +Q N w rd dr r / . The radial and circumfer-

ential force and moment resultants, grouped as = θN N Nr
T{   } , 

= θM M Mr
T{   } , respectively, are defined as

∫ σ=N zd
z

zN

0
� (8)

and

∫ σ=M z zd ,
z

zN

0
� (9)

where σ σ σ= θθrr
T{   } .

2.2.3.  Constitutive equation.  To form governing equilibrium 
equations in terms of displacements, the stresses (and thus in-
plane forces and moments) must be related to the strains (and 
thus displacements) via the elastic constitutive equations. The 
linear piezoelectric effect is also included at this stage. The 
plane strain constitutive equations for the axisymmetric, lin-
early elastic circular plate are

σ σ ε= + −Q dE ,f0 ( )� (10)

where σ σ σ= T
0 0 0{   }  represents the assumed biaxial state of 

stress resulting from the fabrication process, =d d d T
31 31{   } , 

d31 is the piezoelectric constant relating an electric field in the 
z-direction to strains in the plane of the plate, Ef is an applied 
electric field, and the reduced stiffness matrix Q for a trans-
versely isotropic material takes the form

⎡
⎣⎢

⎤
⎦⎥ν

ν
ν

=
− θ

θ

θ
Q

E

1

1
1

,r

r

r

r
2� (11)

where the subscripts on the elastic modulus E and Poisson 
ratio ν are included to clarify the directionality of the material 
properties, but are henceforth dropped for convenience. The 

Table 1.  Variables definitions for the axisymmetric model 
derivation.

Variable Description

θr z, , Cylindrical coordinates
u,w Deflection in the r and z directions, respectively
ε Strain vector

ε0 Strain vector at surface z  =  0
κ Curvature strain vector
N Force resultant vector
M Moment resultant vector
Qr Radial shear force resultant
p Pressure
z z... N0 Coordinates of the composite layers
σ Stress vector
σ0 Fabrication-induced biaxial stress vector
d31 Piezoelectric constant relating normal electric 

field to in-plane strains
Ef Electric field
Q Reduced stiffness matrix for a transversely iso-

tropic material
A B D, , Extensional, flexural-extensional, and flexural 

stiffness matrices, respectively
N M,0 0 Fabrication-induced force and moment resultant 

vectors
N M,P P Piezoelectric induced force and moment result-

ant vectors
φ In-plane rotation, φ = − w rd d/
∗D11

Effective stiffness component, 
= −∗D D B A11 11 11

2
11/

∗B12
Effective stiffness component, 
= −∗B B B A A12 12 11 12 11/

Nr̃
Strain-dependent component of Nr

x Net sense of in-plane force parameter, = Nsgn 0( )
k*2 Non-dimensional in-plane force parameter, 

= ∗N a

D0
2

11
J Y,n n nth order bessel function of the first and second 

kind, respectively
I K,n n nth order modified bessel function of the first 

and second kind, respectively
a(1), a(2) Inner and outer radii of the annulus, respectively

Ci
jT Array which contains the coefficients of the in-

tegration constants

c j( ) Integration constants

f i
j( ) Forcing functions
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material properties and electric field are considered constant 
in each layer and thus piecewise constant through the thick-
ness of the plate. With this in mind, integrating (10) through 
the plate yields the well-known constitutive equations  of a 
piezoelectric composite plate,

⎧
⎨
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where A, B, and D are the ×2 2 extensional, flexural- 
extensional coupling, and flexural stiffness matrices, respec-
tively. They are defined as

∫=A B D Q z z z, , 1, , d .
z

z
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N
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{ } { }� (13)

The in-plane force and moment as well as the effective piezo
electric force and moment are also defined as =N N N T

0 0 0{   } , 
=M M M T

0 0 0{   } , =N N Np p p
T{   }  and =M M Mp p p

T{   } , respec-
tively, where
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In the latter equation, d31 is simply regarded as zero for non-
piezoelectric material layers.

2.2.4.  Governing differential equations.  The governing 
equations  expressed in mixed force-displacement form 
are found by first substituting the N and M components of 
(12) into (5) and the combination of (6) and (7), respec-
tively. Canceling redundant terms in the two resulting 
equations yields
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where φ is the in-plane rotation defined as

φ = −
w

r

d

d
.� (18)

The effective stiffness components appearing in these 
equations  are defined as = −∗D D B A11 11 11

2
11/  and =∗B12  

−B B A A/12 11 12 11, where =∗B 012  for a symmetric laminate.
Equation (16) is nonlinear because of the products of 

the in-plane rotations, φ2, as well as the multiplication of 
the unknown functions Nr(r) and φ r( ). A linearized form is 
sought next. First, let Nr be decomposed into components 
as

= + −N N N N ,r r p0 ˜� (19)

where Nr̃ is the strain-dependent component of Nr from (12). 
Substituting (19) into (16) yields
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To linearize the governing equations, products of in-
plane rotations are neglected in (17) and (20), as well as 
the φNr̃ product in (20). In addition, there always exists a 
sufficiently small voltage input for which �N Np 0, so Np 
is removed from (20). The resulting linearized governing 
equations are

⎛
⎝
⎜

⎞
⎠
⎟

φ φ
φ+ − + = −

∗

∗r r r
x

k

a r

pr

D

d

d

1 d

d

1

2
,

2

2

2

2 2
11

� (21)

and

Figure 3.  Coordinate convention for forces and moments used in the axisymmetric model derivation.
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where x denotes the net sense of the in-plane force as

=x Nsgn ,0( )� (23)

and k*2 is the non-dimensional in-plane force parameter,
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Equation (21) is consistent with the form of the equation for 
a homogeneous circular plate given in [34]. The presence of 
the k*2 term acts to make the stiffness of the plate dependent 
on the value of N0.

2.2.5.  General solutions.  Equations (21) and (22) are valid in 
both the inner circular and outer annular regions of the plate. 
Both equations  are non-homogeneous and they are sequen-
tially coupled. Equation (21) is known as the modified Bessel 
equation when x  >  0, the Bessel equation when x  <  0, and the 
Cauchy equation when x  =  0. As a result, the solution of (21) 
has three different analytical forms,
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which written in terms of w is
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Making use of (25) to resolve the right hand side of (17) and 
solving the resulting non-homogeneous Cauchy equation for 
all three values of x yields expressions for u,
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In (25)–(27), J and Y are Bessel functions of the first and 
second kind, respectively, and I and K are modified Bessel 

functions of the first and second kind. Their subscripts denote 
the order of the Bessel function. The solutions for u and w 
contain five integration constants c1 through c5. Solving these 
equations  in the inner r a0 1( ⩽ ⩽ )( )  and outer a r a1 2( ⩽ ⩽ )( ) ( )  
domains demands ten constants be determined using boundary 
and matching conditions.

2.2.6.  Boundary and matching conditions.  To determine the 
constants, five boundary conditions and five matching con-
ditions are employed. The first boundary conditions enforce 
symmetry and are

φ =0 01 ( )( )� (28)

and

=u 0 0.1 ( )( )� (29)

In each boundary condition above, the superscript (i) commu-
nicates that the quantity is evaluated in the ith region (i  =  1,2). 
Therefore, when these conditions are applied, any region-
dependent input parameters found in (25) and (26), including 
all A, B, and D components, in addition to k* and a, must be ref-
erenced to the appropriate plate region. Together, (28) and (29) 
immediately require that = =c c 02

1
4
1( ) ( )  (with the same super-

script convention applying to integration constants as input 
parameters) for all values of x(1). Eight integration constants 
remain and thus eight more boundary conditions are required. 
Additional boundary conditions on the outer plate edge are

φ= − φM a k ar
1 2 2 2( ) ( )( ) ( ) ( ) ( )� (30)

=u a 0,2 2( )( ) ( )� (31)

and

=w a 0.2 2( )( ) ( )� (32)

Equations (31) and (32) are classic clamped boundary con-
ditions, while (30) is a compliant boundary condition which 
effectively makes the simply-supported ( =φk 0) and clamped 
( = ∞φk ) cases available from the final solution.

The five remaining conditions require continuity of rotations, 
displacements, forces, and moments at the interface between 
the inner and outer regions (r  =  a(1)) of the plate. They are

φ φ=a a ,1 1 2 1( ) ( )( ) ( ) ( ) ( )� (33)

=u a u a ,1 1 2 1( ) ( )( ) ( ) ( ) ( )� (34)

=w a w a ,1 1 2 1( ) ( )( ) ( ) ( ) ( )� (35)

=N a N a ,r r
1 1 2 1( ) ( )( ) ( ) ( ) ( )� (36)

and

=M a M a .r r
1 1 2 1( ) ( )( ) ( ) ( ) ( )� (37)

Equations (37) and (36) require expressions for the radial 
moment and force, Mr and Nr, respectively. They are found 
from plugging (26) and (27) into (3) and (4) and the result into 
(12). The final force and moment expressions are
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(39)

Because the inner and outer domains can each take on 
three different solutions depending on the state of in-plane 
stress (tension, none, compression), a total of nine piece-
wise analytical solutions are required to account for all the 

combinations. The algebra associated with such an analytical 
approach is tedious and the final expressions long; a matrix 
solution approach is taken here instead. To apply the method, 
each boundary condition is first written in the form

+ = +C c C cf f ,i i
T

i
T

i
1 1 2 21 2( ) ( ) ( ) ( ) ( ) ( )� (40)

where each Ci
j( ) is an array which contains the coefficients 

of the integration constants, c j( ) contains the integration con-

stants themselves, and f i
j( ) represents the collected free terms 

for the ith boundary condition ( = …i 1, 2 8) in the jth domain 
(j  =  1,2). Collecting the eight equations represented by (40) 
into a single matrix equation gives

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− = −C C c

c
f f

x3 1

.
x x

x
x x

1 2 1

2
1 2

8 3 8 5

5 1
8 1 8 1

( ) ( ) ( )

( )
( ) ( )� (41)

The utility of (41) is that the integration constants are found in 
a modular manner that allows for the coupled solution of any 
inner region case ( = −x 1, 0, 11( ) ) and any outer region case 
( = −x 1, 0, 12( ) ) simply via matrix inversion of the combined 
C[ ] matrix. It is left as an exercise for the reader to derive the 
integration coefficients and forcing functions appropriate for 
the three states of in-plane stress (tension, none, compression) 
for the inner and outer diaphragm regions.

Deflection of the diaphragm occurs due to any or all of 3 
inputs: initial stress, pressure, or voltage. In the case of an 
initially stressed diaphragm, there is an existing static deflec-
tion before the application of voltage or pressure. Voltage or 
pressure loading leads to an additional incremental deflec-
tion which in the context of lumped element modeling is the 
quantity of interest. It is thus convenient to solve for the incre-
mental deflection directly. This is made possible via dividing 
the array of forcing terms, f j( ), into its components,

= + +f f f f ,j j
p
j

v
j

0
( ) ( ) ( ) ( )

� (42)

where each of f j
0
( ), f p

j( ), and f v
j( ) include only those terms relating 

to in-plane stress, pressure, and voltage, respectively, with all 
others zero. To solve for the initial deflection alone, replace 
f j( ) with only the in-plane component, f j

0
( ) (equivalent to let-

ting v  =  p  =  0). To solve for the incremental deflection directly, 

replace the total f j( ) by f p
j( ) or f v

j( ) for incremental deflection 
due to pressure or voltage, respectively. In these latter cases, 
the in-plane stress still affects the stiffness via its inclusion in C.

3.  Experimental results

In this section, measurements of an AlN-based microphone 
[15, 16] are compared with the analytical solution with and 
without film stress. Fabrication was performed by Avago 
Technologies in Fort Collins, CO, using a variant of their film 
bulk acoustic resonator (FBAR) process [35–38]. The cross-
section with geometric dimensions is shown in figure 4. The 
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device consisted of a borosilicate glass (BSG) structural layer, 
molybdenum (Mo) electrodes, an AlN piezoelectric layer, and 
a BSG passivation layer.

During the fabrication, wafer curvature was measured with 
a Tencor Flexus FLX 5400 after each film deposition and the 
film stress was estimated using Stoney’s Formula [39]. The 
film stress estimates are collected in table 2 and were used as 
inputs for the analytical solution with film stress.

3.1.  Initial deflection

A Wyko NT1100 scanning white light interferometer was 
used to measure the static deflection of the diaphragm. 
Because AlN is translucent, a thin (50 nm) layer of aluminum 
was evaporated on the diaphragm to provide a reflective top 
surface. Two profiles taken at 90 degrees with respect to one 
another are shown in figure 5 versus the analytical prediction 
that includes the measured film stresses. There is no bending 
induced in the zero stress case, such that only the topography 
of the diaphragm is transcribed. The zero stress diaphragm 
profile is shown for reference. The experimental and theor
etical solutions are well-matched in shape, though the slope of 
the measurements in the annulus is more pronounced than the 
theory. This leads to an under-prediction of the center deflec-
tion of the diaphragm.

3.2.  Pressure loading

The acoustic setup used to measure frontside diaphragm 
deflection during application of a known oscillatory pres
sure is shown in figure 6. The device under test (DUT) was 
mounted in a pressure coupler that allows for exposure to 
oscillatory pressure on the diaphragm backside. The pressure 
was measured via a reference microphone at the end of the 
pressure coupler. The pressures at the DUT and the reference 
microphone were approximated as equal for low frequency 
sound where the wavelength was much greater than the dis-
tance between the DUT and the reference microphone. The 
wavelength at 1 kHz (34 cm) was 38 times the test and refer-
ence microphone separation and thus more than sufficient to 
regard the pressures at the two locations as nearly equal. With 
a resonant frequency greater than 100 kHz, excitation at 1 kHz 
was sufficiently low to be considered quasi-static. This was 
confirmed experimentally by placing reference microphones 
in both locations and measuring the relative pressure while 
sweeping the excitation frequency. Sound pressure levels from 
95 to 105 dB ref 20 μPa were tested. Consistent sensitivity 
was observed over the pressure range and no measureable har-
monics were generated, indicating that the deflection response 
was within the linear regime.

Vibration measurements were taken over the surface of the 
diaphragm using a Polytec scanning laser vibrometer (LV) 
system as shown in figure  6. The experimentally measured 
deflection per pressure is plotted along with the analytical 
solutions for the zero stress case and the stress case from 
table 2 are plotted in figure 7. As is shown in the figure, by 
not accounting for the film stress, the pressure sensitivity of 

the diaphragm is greatly over-predicted. This is to be expected 
since the net in-plane force from residual stress is positive 
for both the inner and outer sections of the diaphragm, i.e. x 
from (23) is positive and the non-dimensional in-plane force 
parameter k*2 (24) is equal to 200 and 12, respectively, for 
the inner and outer sections. Thus, the residual stress puts the 
diaphragm in an overall tensile load, increasing it stiffness. 
By accounting for residual stress, the accuracy of the pressure 
sensitivity increased by nearly a factor of 10.

3.3.  Voltage loading

The diaphragm displacement due to voltage excitation was 
measured via the experimental setup shown in figure 8. In this 
instance, an ac voltage was applied to the DUT and the vibra-
tion profile was recorded via the Polytec LV. Again, excitation 

Figure 4.  Cross section of the AlN-based microphone with materials 
and thickness.

Table 2.  Diaphragm geometry and stresses in PMUT layers.

Parameter Thickness (μm) Stress (MPa)

BSG passivation layer 0.14 −50
Mo top electrode 0.15 −160
AlN piezoelectric layer 1.00 −40
Mo bottom electrode 0.60 10
BSG structural layer 2.00 60

Figure 5.  Static deflection of the diaphragm.
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at 1 kHz was applied and considered quasi-static. The voltage 
amplitude for the given results was 2 V. Consistent sensitivity 
was observed over a range of voltages and no measureable 
harmonics were generated, indicating that the piezoelectric 
deflection response was within the linear regime.

The measured deflection profile per voltage is plotted 
along with the analytical solutions for the zero stress case 
and the stress case from table  2 in figure  9. Similar to the 
pressure loading solution, the analytical solution for the zero 
stress case greatly over-predicts the voltage sensitivity of the 
overall tensile diaphragm. By accounting for the film stresses, 
the accuracy of the analytical solution increased by greater 
than 6 times.

3.4.  Stress uncertainty

A Monte Carlo simulation was implemented to assess the 
effects of uncertainty in the stress measurements. A 12.5 MPa 
standard deviation was assumed for the stress measurements 
for each of the films. The mean and standard deviation of the 

deflections were calculated from sixty-thousand iterations. In 
addition, an axisymmetric finite element model was developed 
in COMSOL that incorporates the measured film stresses for 
comparison. Geometric nonlinearity effects are included in 
the model to account for large deflections introduced by the 
film stresses. A parametric solver was used to solve static, 
pressure-induced, and voltage-induced deflections. The 
results for pressure and voltage are shown in figures 10 and 
11, respectively. The analytical and finite element models 
show excellent agreement indicating that the combination of 
geometry and film stresses are in a regime where the linear-
ized analytical model presented is accurate.

The experimental measurements are under-predicted by the 
two-standard deviation range predicted by the Monte Carlo 
simulation given the 12.5 MPa standard deviation in each of 
the film stresses. However, the stress uncertainty reported by 
Avago Technologies was greater than 50 MPa. At this large 
of a standard deviation, the Monte Carlo simulation predicted 
cases where the combination of stresses and geometry put the 
diaphragm in a buckling regime where the assumptions of the 
linearized analytical solution are no longer valid. Predicting 
post-buckled solutions is beyond the scope of the analytical 
solution presented.

In addition to uncertainty in the stress measurements, a 
potential bias error exists between the AlN film stress meas-
ured at the wafer level and the actual film stress within the 
diaphragm. Although the film stresses were experimentally 
measured, they were extracted at the wafer level via wafer 
bow measurements on films deposited on patterned substrates. 
As shown in [40], the stress of the AlN film deposited on a 
patterned bottom electrode will be different than that of the 
surrounding substrate. Because the patterned bottom electrode 
is a low percentage of the wafer area, the wafer bow is domi-
nated by the remaining substrate area leading to a bias error 
between the AlN film stress on the electrode and the film stress 
measured via wafer bow. Accounting for a bias error in the 

Figure 6.  Experimental setup for pressure loading deflection 
measurements.

Figure 7.  Comparison of the pressure loaded diaphragm deflection 
profile between the analytical solution accounting for the stress 
from table 2, the solution neglecting film stress, and the quasi-static 
results at 1 kHz measured using the experimental setup in figure 6.

Figure 8.  Experimental setup for voltage loading deflection 
measurements.
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AlN from  −40 MPa to  −100 MPa, and shifting the BSG struc-
tural layer stress less than one standard deviation from 60 MPa 
to 25 MPa, the error in the pressure and voltage solutions are 
reduced to less than 1% as shown in figures 12 and 13. The 
error in the initial deflection of the diaphragm, as defined in 
figure 2(b), improved from 69% to less than 22% as shown in 
figure 14. This underlies the importance of accurate film stress 
measurements and of films with consistent film stress.

3.5.  Results summary

One of the primary benefits of the analytical solution is the 
efficiency of the computation. This enables the model to 
be used in a design optimization scheme where the model 

calculation is made repetitively. The COMSOL axisym-
metric finite element model was used to compare computation 
speed. A parametric solver was used to solve static, pressure-
induced, and voltage-induced deflections. The COMSOL 
model used 14 500 quadrilateral elements and solved in 22 s. 
In comparison, the analytical model solved in 80 ms using the 
same computational hardware.

While there is significant improvement in the prediction 
of the deflection by including fabrication-induced residual 
stress, the model does under-predict in comparison to the 
measured profiles, as shown in figures 10 and 11, likely due 
to uncertainty in the film stress measurements. The voltage 
and pressure analytical solutions match to within 35% and 
55%, respectively, of the experimentally measured center 
deflection.

Figure 9.  Comparison of the voltage loaded diaphragm deflection 
profile between the analytical solution accounting for the stress 
from table 2, the solution neglecting film stress, and the quasi-static 
results at 1 kHz measured using the experimental setup in figure 8.

Figure 10.  Comparison of the pressure driven diaphragm deflection 
profile between the measurements using the experimental setup in 
figure 6, the Monte Carlo simulation using the analytical solution 
with 12.5 MPa standard deviation in the film stresses, and a 
COMSOL finite element model simulation incorporating thin film 
stress.

Figure 11.  Comparison of the voltage driven diaphragm deflection 
profile between the measurements using the experimental setup in 
figure 8, the Monte Carlo simulation using the analytical solution 
with 12.5 MPa standard deviation in the film stresses, and a 
COMSOL finite element model simulation incorporating thin film 
stress.

Figure 12.  Comparison of the pressure driven diaphragm deflection 
profile between the measurements and analytical prediction 
accounting for potential bias error in stress measurement.
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4.  Conclusion

In this paper, an analytical model for a radially non-uniform, 
multi-layered axisymmetric piezoelectric diaphragm sub-
jected to in-plane stresses, transverse pressure, and applied 
voltage was developed. The model has been used previ-
ously along with lumped element modeling to predict the 
performance of microphone and PMUT devices [9, 15, 16]. 
Measurements of these devices were compared with theor
etical predictions. Inclusion of fabrication-induced residual 
stress increased the model accuracy by factors of 10 and 6 
for the pressure and voltage loading cases, respectively. 
Deviations between the two were attributed primarily to inac-
curacies in measurements of the film stresses used as model 
inputs. Given accurate inputs, the model is a valuable predic-
tive tool for use in design optimization due to its efficient 
calculation time.
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